Geometry effects on the interaction of two equal-sized drops in simple shear flow at finite Reynolds numbers
نویسندگان
چکیده
The effect of geometry on the interaction of two equal-sized drops in shear flow is presented. The full Navier-Stokes equations are solved by a finite difference/front tracking method. The interaction of drops was studied at finite Reynolds numbers for viscosity ratio (λ) of one. The distance between drop centres along the velocity gradient direction (z) was measured as a function of time. The interaction of two drops contains approach, collision, and separation. Based on experimental data, we simulated different geometries by changing the offset and size of drops. It was found that ∆z increases after collision and reaches ∆z, during three stages of interaction, increases with the increasing initial offset. To investigate the drop shape evolution, we calculated the deformation and the orientation angle formed by the drop major axis and horizontal direction. The deformation of the drops is maximum when the drops are pressed against each other and minimum when they are drawn a part. Our results show that the time of approaching of drops at low initial offset is greater than the other ones, but the maximum deformation is the same for equal drop sizes. The deformation decreases with the decreasing size of drops. As the initial offset increases, the drops rotate more quickly and the available contact time for film drainage decreases. We found that the trajectories of drops in the approaching stage are different owing to the different initial offsets. However, after the drops come into contact, it can be seen that they follow the same trajectories, similar to experimental results.
منابع مشابه
Effect of Density Ratio on the Hydrodynamic Interaction between Two Drops in Simple Shear Flow
The effect of density ratio on the hydrodynamic interaction between two drops in simple shear flow at finite Reynolds numbers is studied considering the gravity influence. In this study the full Navier-Stokes equations are solved by a finite difference/front tracking method. The interaction of two drops contains approach, collision, and separation. For a range of density ratios, the interaction...
متن کاملParametric study of a viscoelastic RANS turbulence model in the fully developed channel flow
One of the newest of viscoelastic RANS turbulence models for drag reducing channel flow with polymer additives is studied in different flow and rheological properties. In this model, finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model is used to describe the viscoelastic effect of polymer solution and turbulence model is developed in the k-ϵ-(ν^2 ) ̅-f framework. The geome...
متن کاملA Numerical Study of Drop Motion in Poiseuille Flow
The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...
متن کاملA Numerical Study of Drop Motion in Poiseuille Flow
The cross-stream migration of a deformable drop in two-dimensional Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (<1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For a viscosity ratio 0.125, the drop moves toward the centre of the channe while for t...
متن کاملElastico-Viscous Flow between Two Rotating Discs of Different Transpiration for High Reynolds Numbers (RESEARCH NOTE)
The flow in an elastico-viscous fluid between two co-axial infinite rotating porous discs is considered for high cross flow Reynolds number. The discs are rotating with different angular velocity and the injection rate of the fluid at one disc is different from the suction rate of other disc. The effect of suction parameters on the velocity components have been investigated numerically and solv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009